Mechanisms contributing to muscle-wasting in acute uremia: activation of amino acid catabolism.

نویسندگان

  • S R Price
  • D Reaich
  • A C Marinovic
  • B K England
  • J L Bailey
  • R Caban
  • W E Mitch
  • B J Maroni
چکیده

Acute uremia (ARF) causes metabolic defects in glucose and protein metabolism that contribute to muscle wasting. To examine whether there are also defects in the metabolism of essential amino acids in ARF, we measured the activity of the rate-limiting enzyme for branched-chain amino acid catabolism, branched-chain ketoacid dehydrogenase (BCKAD), in rat muscles. Because chronic acidosis activates muscle BCKAD, we also evaluated the influence of acidosis by studying ARF rats given either NaCl (ARF-NaCl) or NaHCO3 (ARF-HCO3) to prevent acidosis, and sham-operated, control rats given NaHCO3. ARF-NaCl rats became progressively acidemic (serum [HCO3] = 21.3 +/- 0.7 mM within 18 h and 14.7 +/- 0.8 mM after 44 h; mean +/- SEM), but this was corrected with NaHCO3. Plasma valine was low in ARF-NaCl and ARF-HCO3 rats. Plasma isoleucine, but not leucine, was low in ARF-NaCl rats, and isoleucine tended to be lower in ARF-HCO3 rats. Basal BCKAD activity (a measure of active BCKAD in muscle) was increased more than 17-fold (P < 0.01) in ARF-NaCl rat muscles, and this response was partially suppressed by NaHCO3. Maximal BCKAD activity (an estimate of BCKAD content), subunit mRNA levels, and BCKAD protein content were not different in ARF and control rat muscles. Thus, ARF increases branched-chain amino acid catabolism by activating BCKAD by a mechanism that includes acidosis. Moreover, in a muscle-wasting condition such as ARF, there is a coordinated increase in protein and essential amino acid catabolism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antiglucocorticoid RU38486 reduces net protein catabolism in experimental acute renal failure

BACKGROUND In acute renal failure, a pronounced net protein catabolism occurs that has long been associated with corticoid action. By competitively blocking the glucocorticoid receptor with the potent antiglucocorticoid RU 38486, the present study addressed the question to what extent does corticoid action specific to uremia cause the observed muscle degradation, and does inhibition of glucocor...

متن کامل

Internal redistribution of tissue protein synthesis in uremia.

Tissue composition and in vivo tissue protein synthesis were altered by acute uremia, induced in rats by bilateral nephrectomy. Net protein synthesis (anabolism minus catabolism) was increased in liver and heart and decreased in skeletal muscle, as judged from changes in total organ weight, ratios of protein: DNA and RNA: DNA, and leucine-(14)C incorporation into trichloroacetic acid (TCA)-inso...

متن کامل

Protein-Energy Wasting and Mortality in Chronic Kidney Disease

Protein-energy wasting (PEW) is common in patients with chronic kidney disease (CKD) and is associated with an increased death risk from cardiovascular diseases. However, while even minor renal dysfunction is an independent predictor of adverse cardiovascular prognosis, PEW becomes clinically manifest at an advanced stage, early before or during the dialytic stage. Mechanisms causing loss of mu...

متن کامل

Catabolic signaling and muscle wasting after acute ischemic stroke in mice: indication for a stroke-specific sarcopenia.

BACKGROUND AND PURPOSE Muscle wasting is a common complication accompanying stroke. Although it is known to impair poststroke recovery, the mechanisms of subacute catabolism after stroke have not been investigated in detail. The aim of this study is to investigate mechanisms of local and systemic catabolism and muscle wasting (sarcopenia) in a model of ischemic stroke systematically. METHODS ...

متن کامل

Muscle protein metabolism during sepsis

Introduction One of the most pronounced metabolic changes after injury, sepsis and other critical illness is increased urinary excretion of nitrogen, resulting in negative nitrogen balance. There is evidence that skeletal muscle is the major source of nitrogen in these conditions. Muscle catabolism during sepsis is mainly caused by increased protein degradation, in particular myofibrillar prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 9 3  شماره 

صفحات  -

تاریخ انتشار 1998